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ABSTRACT
We address the problem of dynamic resource placement in
general networking and cloud computing applications. We
consider a large-scale system faced by time varying and re-
gionally distributed demands for various resources. The sys-
tem operator aims at placing the resources across regions
to minimize costs (maximize revenues), and to address the
problem of how to dynamically reposition the resources in
reaction to the time varying demand. Large Software-as-a-
Service (SaaS) providers that rent server resources (across
multiple datacenters) from a cloud provider, face the prob-
lem of where to place various server resources and naturally
fall under this paradigm.

The main challenge posed by this setting is the need to
deal with arbitrary multi-dimensional (of high-dimensionality)
stochastic demands which vary over time. Under such set-
tings one should provide a tradeoff between optimizing the
resource placement as to meet its demand, and minimizing
the number of added and removed resources to the place-
ment.

Our analysis and simulations reveal that optimizing the
resource placement may inflict huge resource repositioning
costs, even if the demand has small fluctuations. We there-
fore propose an algorithmic framework that overcomes this
difficulty and yields very efficient dynamic placements with
bounded repositioning costs.

Our solutions are based on new theoretical techniques us-
ing graph theory methodologies that can be applied to other
optimization/combinatorial problems. Our solution is devel-
oped under a very wide cost model that allows accommoda-
tion of many systems.

1. INTRODUCTION
Cloud computing has emerged as an attractive solution for

the delivery of computing resources over the Internet. Ex-
isting cloud computing platforms like Amazon EC2 [2] and
Microsoft Azure [12] organize a shared pool of servers in
geographically distributed datacenters to enable on-demand
rental of compute resources at scale. Many Software-as-a-
Service (SaaS) solutions, such as online web services, stream-
ing applications, and social networks, often feature demands
that are highly dynamic and geo-distributed, and leverage
cloud computing to serve users more efficiently and reliably.

A common approach used by large-scale SaaS providers
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is to place (server) resources at various geographical areas
to be close to their users and guarantee adequate levels of
service quality, e.g., low response times. It is typically pre-
ferred to serve a demand by a resource located in the same
area rather than by a remotely located resource. At the
same time, placing and maintaing a resource incurs a cost
such as server rental cost. For example, Amazon EC2 offers
several server instance types1 natively (and few thousands
more through a marketplace). Amazon bills instance usage
on a pay-per-use basis, e.g., according to an on-demand price
plan that varies with instance type and datacenter location.

Engineering such a service in a cost-effective manner is
challenging due to the need to deal with regionally dis-
tributed demands for various resources, namely, finding the
right (e.g., a low cost) placement of resources at the regions
while providing adequate service quality. The problem is
further complicated by the fact that the demand is time
varying and can incur large spikes [7]. A simple solution
adopted by many providers is to dynamically scale the num-
ber of resources to match the average demand. However, the
uncertainty of variable demands can lead to insufficient re-
sources, degrading service quality. To mitigate this scenario,
operators often maintain an extra pool of active server re-
sources at the expense of an additional cost overhead.

In this paper, we address the challenging problem of how
to place resources over geographically distributed areas so
as to minimize the total operation cost while providing ad-
equate level of performance; and how to dynamically repo-
sition the resources in reaction to demand fluctuations. To
this end, we provide a framework and algorithms wherein de-
mand is captured as a multi dimensional distribution which
varies over time, consisting of the demand distribution for
each resource and in each area.

We develop a general model that captures the major cost
parameters that affect the design of dynamic resource place-
ment in SaaS applications, including: (a) the cost of placing
a resource (e.g, renting an on-demand server) and that of
repositioning (moving) it, and (b) the benefit of satisfying
the demand, e.g., the revenue associated with reducing user
response times.

This paper makes two contributions. First, our analysis
and simulations reveal that changing the optimal placement
(across two adjacent time epochs) may inflict huge reposi-
tioning costs, even when reacting to a small change in the
demand. Thus, a practical treatment of the dynamic place-
ment problem should provide a tradeoff between optimizing

1An EC2 instance is a virtual machine that runs a specific
application image.



the resource placement as to meet the demand, and min-
imizing repositioning costs, i.e., the number of added and
removed resources.

Second, we propose an algorithmic solution addresses the
above concern and yields very efficient dynamic placements
with bounded repositioning costs. The algorithm consists of
two components.

The first one is a Lazy Algorithm (LA) and is driven
by our sensitivity analysis. The analysis shows that small
changes in the demand distribution result in a bounded
placement cost deviation (though it can incur very large
repositioning costs). Consequently, the algorithm avoids un-
necessary resource reconfigurations by maintaining the cur-
rent placement when placement deviation cost is small.

The second component is a Shortest Cycle Cancel-
ing algorithm (SCC), which modifies a (previously deter-
mined) placement and adapts it to new demand distribution.
The algorithm efficiently improves a placement (reduces its
cost) under a bounded reposition cost. It is based new the-
oretical techniques using graph theory methodologies that
can be applied to other optimization/combinatorial prob-
lems. The algorithm uses the following methodologies and
principles: 1) A reduction of the static placement problem
into a min cost flow problem. 2) Finding improved (lower
cost) placements by finding augmenting flows through neg-
ative cycles in the corresponding flow graph. 3) Achieving
improved placements whose reposition costs are minimal by
finding negative cycles whose length is minimal.

Combining these two parts, we propose a Hybrid al-
gorithm that uses LA to avoid placement reconfigurations
until needed, and then applies SCC to allow for controlled
non-abrupt changes in the configuration of resources.

We evaluate our algorithms using practical conditions, i.e.,
using Amazon’s EC2 on-demand image costs and realistic
demand arrival rates. Our results demonstrate that the pro-
posed Hybrid algorithm can achieve near optimal placement
(its cost is higher up to 1.4% from the optimal placement
cost), while maintaining a low reposition cost. In particular,
the reposition cost of the proposed Hybrid algorithm is sig-
nificantly lower than that of an optimal placement (more
than 65%) as well as that of a proportional mean-based
placement, a simple and widely-used scheme [17, 20, 18]
wherein the number of servers is proportional to the aver-
age demand.

The rest of the paper is organized as follows. Section 2
describes previous work. Section 3 presents our model and
the problem. Section 4 deals with sensitivity analysis of dy-
namic placements. Section 5 describes the lazy placement
algorithm. Sections 6 and 7 describes the SCC algorithm
for improving placement. Section 8 presents the Hybrid al-
gorithm. Section 9 describes our evaluation methodology.
Finally, section 10 concludes this paper.

The reader should note that the framework addressed in
this paper is fairly wide and entails, in some cases, many
details; for clarity of presentation, we placed some of these
details in the technical report [19] and the appendix.

2. RELATED WORK
The problem of resource placement in distributed systems

often falls under facility location theory [9]. This area has re-
ceived significant attention from the viewpoint of both anal-
ysis and algorithmic solutions. Our version of the problem
differs from traditional facility location problems in that it

incorporates stochastic demands and capacity constrains on
the locations (servers).

Early works on distributed resource placement primary
focused on placing content replicas across a content distri-
bution or a web cache network (see e.g. [16, 15]). However,
most of these works have focused on static or determinis-
tic demand profiles, paying little attention to the capacity
limits at individual servers and geographical areas.

With the growth of cloud computing and large-scale dy-
namic services, the problem of dynamic server placement in
geo-distributed environments has received increasing atten-
tion. Some works studied the problem from a standpoint of
a service provider. For example, [24] focused on dynamically
optimizing service placement while ensuring performance re-
quirements; and [21] studied algorithms for dynamic scal-
ing of social media applications. Other works looked at
the problem from a cloud provider’s viewpoint, i.e., assign-
ing workloads to distributed datacenters in a cost-effective
manner [22]. These works typically develop an optimiza-
tion problem with deterministic inputs and apply it peri-
odically. In contrast, we provide dynamic algorithm that
inherently accounts for the full distribution of the demand
and for repositioning costs, enabling cost-efficient placement
with controlled amount of resource repositioning.

A variant of the placement problem which focuses on the
static placement problem (see Subsection 3.2) and accounts
mainly for service costs (see Subsection 3.1) has been con-
sidered in the context of content replication in P2P systems.
[20] was perhaps the first to study a network setting similar
to ours with an exponentially expanding topology for file
sharing systems. It proved the optimality of proportional
replication i.e., one based on the mean demand, under the
assumption of abundant storage and upload capacity where
all possible requests are always be served. In contrast, our
model allows for restricting the number of resources (files),
resulting in min-cost flow based replication. A variant of
the placement problem which accounts mainly for service
costs (see basic model in Subsection 3.1) has been consid-
ered in the context of content replication in P2P systems.
[20] was perhaps the first to study a network setting similar
to ours with an exponentially expanding topology for file
sharing systems. It proved the optimality of proportional
replication i.e., one based on the mean demand, under the
assumption of abundant storage and upload capacity where
all possible requests are always be served. In contrast, our
model allows for restricting the number of resources (files),
resulting in min-cost flow based replication.

Other relevant works are [25, 5, 11] that focused on P2P
VoD replication systems. [25] proposed an optimal replica-
tion algorithm, called RLB, based on the assumption that
the number of movies is much smaller than the number of
peers. The work focused on small-scale networks, and do
not consider geo-distributed topologies. [5] proposed place-
ment framework for large-scale VoD service based on mixed
integer program. While their model accounts for arbitrary
demand pattern and network structure it assumes determin-
istic demand, whereas we consider stochastic one. [11] char-
acterized the service efficiency of distributed content plat-
forms as function of servers’ storage size by using an asymp-
totic performance model for dynamic matching algorithms.
In this context, our work maps to a single content server
storage model, which enables us to solve the combined op-
timization problem of matching and placement (i.e., static



Figure 1: An example of the system topology. Note
that the storage is s1 = 5 and s2 = 4 and the place-
ment is L1

1 = 1, L2
1 = 0, L1

2 = 2 etc.

placement) using exact analysis.
This work solves a dynamic setting under a general cloud-

oriented cost model; this is in contrast to [18], which for-
mulated and treated the static placement problem under a
basic and limited model (reviewed in Subsection 3.1). More
differences between [18] and our paper are discussed in Sub-
section 3.2.

3. THE MODEL AND THE PROBLEM
For the sake of exposition, we start by describing the

model used for the dynamic and static placement problem.
We then describe theses problems. Although we focus our
examples on a SaaS provider that rents servers from a cloud
provider, the generality of our model allows solving a variety
of resource placement problems spanning from server place-
ment in server farms to personnel placement in call centers.

3.1 The model
We consider a SaaS provider that can rent servers from

a cloud provider by placing the servers in k areas indexed
by 1, 2, . . . , k. In each area the provider can place multiple
resources (servers) of different types indexed by 1, 2, . . . ,m.
Let Lji denote the number of type i resources placed in area
j. The set of resources (servers) placed in these areas is
called a placement and denoted by L = {Lji}. We as-
sume that the SaaS provider can place in area j up to sj
resources due to the cloud provider limitations (As Ama-
zon EC2 poses [3]). Placement L is called feasible if the
number of resources in area j is not larger than sj , i.e
Lj :=

∑m
i=1 L

j
i ≤ sj . We define the total system stor-

age as s :=
∑k
j=1 s

j .

We consider a stochastic demand for resources. Let Dj
i be

a random variable denoting the number of requests for type-
i resource in area j. We do not make any assumption on the
distribution of Dj

i , namely it can be of an arbitrary (non-
negative) distribution. We assume that the demand CDF
values Pr(Dj

i ≥ n), n = 0, 1, 2, . . ., as well as their mean

value E(Dj
i ), are calculated in O(1), and are available in an

external data base. An example of the topology of a system
is depicted in Fig. 1, where every computer represents a
resource.
Service cost model. Consider a type i request made in
area j and a placement L. If the request is assigned to a
resource in L, then the request is called satisfied. If the re-
quest is satisfied, it is assigned to either of: 1) A resource of
L located in area j (and therefore the request is granted lo-
cally). 2) A resource of L located in a different area (granted
remotely). If a request is not assigned to any resource in
L, then it is called an unsatisfied request. The costs of

a locally satisfied request, a remotely satisfied request, and
an unsatisfied request are denoted by Cloci , Cremi , Cunsati ,
naturally obeying Cloci ≤ Cremi ≤ Cunsati . For example,
in cloud-based applications, these costs can represent the
revenue loss associated with increasing user response times
when a request is granted remotely rather than locally or
when its not granted at all.

Given a placement L and a deterministic realization dji of

the demand Dj
i , one can derive an optimal assignment of the

resources to the demand, yielding minimal assignment cost
(see Subsection 4.1). Let C(L, dji ) be the optimal assignment
cost and denote by gloci , gremi and gunsati the corresponding
number of requests granted under the optimal assignment
from a local area, granted from a remote area, and unsatis-
fied ones, respectively. Then, the minimal assignment cost
is simply C(L, dji ) = Cloci ·gloci +Cremi ·gremi +Cunsati ·gunsati .
The expected service cost E|D(C(L)) is defined as the ex-
pected value of the minimal assignment cost over all demand
realizations: E|D(C(L)) =

∑m
i=1

∑k
j=1 C(L, dji ) · Pr(Dj

i =

dji ).
Placement cost model. We associate a resource cost

with placement L, denoted by Cr(L), which represents the
cost of placing and operating the resources of L. We assume
that Cr(L) is a semi-separable function. Roughly speaking,
this means that Cr(L) consists of the sum of individual func-
tions, each of them is a function either of: 1) The number of
resources placed of type i (Li), 2) the number of resources
placed in area j (Lj), 3) The number of type i resources
placed in area j (Lji ). A formal definition of semi-separable
functions is given in Section 6.1.

This cost model allows us to capture a variety of server
rental plans. For example, the on-demand server pricing
of cloud providers such as EC2 [2] can be captured as pji ,
a fixed price for running type-i server in area-j, yielding a
resource cost of Cr(L) =

∑m
i=1

∑k
j=1 L

j
i · p

j
i . A more com-

plicated example can incorporate software licensing costs,
e.g. Google Cloud charges [10], and area-specific charges.
Let ri be the licensing cost associated with type-i server
and hj be an add-on provisioning cost for area j. Then, the
(semi-separable) resource cost becomes

Cr(L) =

m∑
i=1

k∑
j=1

Lji · p
j
i +

k∑
j=1

Lj · hj +

m∑
i=1

Li · ri. (1)

We assume that the resource cost is independent of the
demand distribution Dj

i and of the service cost constants.
We define the static placement cost Cp(L) as the sum of
the resource cost and the service cost

Cp(L) = Cr(L) + E|D(C(L)). (2)

We assume that Cp(L) is a convex function. That is, that
the marginal profit from adding a resource (see Remark 3.1)
decreases as the quantity of resources increases, as is often
the case in operating costs of real-world systems.

Resource capacity. A type-i resource can serve at most
Bi requests. This parameter can reflect the upload or pro-
cessing capacity of a server.

3.2 The static placement problem
The static placement problem was addressed in [18]. Our

focus here is on the dynamic problem (see next subsection).



Also, we are considering a significantly more general cost
function than that used in [18], since the model in [18] as-
sumed Cr(L) = 0. Another limitation [18] poses is that
every server can grant up to one request Bi = 1. Therefore
the analysis we provide here can also generalize the treat-
ment of the static problem provided in [18]

We define the static placement problem as a minimization
of the (total) placement cost under storage constrains. More
formally, given the demand distributions {Dj

i }, i = 1, . . . ,m,
j = 1, . . . , k, service cost parameters Cloci , Cremi , Cunsati ,
placement cost parameters, area storage values s1, s2, . . . sk,
resource capacities Bi and an optimal matching algorithm,
determine the optimal resource placement L = {Lji}, i =
1, . . . ,m, j = 1, . . . , k, that minimizes the placement cost
Cr(L) + E|D(C(L)) among all feasible placements obeying
Lj =

∑m
i=1 L

j
i ≤ s

j .

Remark 3.1. In some applications service cost param-
eters are alternatively replaced by service revenues pa-
rameters Rloc ≥ Rrem ≥ Runsat, representing the revenue
of satisfying the demand. These service revenue parame-
ters represent respectively the Average Revenue Per User
(ARPU) of granting a user request locally, remotely, or of
not granting the user request. Under this setting we may de-
fine an equivalent problem of maximizing placement profit
where placement cost is replaced by placement profit E|D(C(L))−
Cr(L). To convert the revenue parameters to cost parame-
ters we multiple the parameters by −1.

3.3 The dynamic placement problem
In the dynamic placement problem, we assume that the

demand is time-dependent where the demand distribution
at time slot t is denoted as D(t) = {D(t)ji}. The static
placement cost of placement L, which depends on the de-

mand, D(t), is denoted by C
D(t)
p (L) and the optimal place-

ment with respect to D(t) is denoted by Lopt(D(t)). We
call algorithm A a dynamic algorithm if it computes the
placement at time t, LA(t), only as a function of past infor-
mation; that is, it cannot use D(t+1), D(t+2), . . . Note that
LA(t) is not necessarily the optimal placement Lopt(D(t)).

Two important costs are relevant to a dynamic algorithm:
1) The static placement cost deviation (alternatively,
the cost deviation ), and 2) The resource reposition
cost. The former, denoted Cdev(A, t), evaluates the devia-
tion of the static placement cost between the output place-
ment LA(t) and the optimal placement Lopt(D(t)) with re-
spect to demand D(t). That is

Cdev(A,D(t))
.
= CD(t)

p (LA(t))− CD(t)
p (Lopt(D(t))). (3)

We denote the placement cost deviation of A as the worst-
case placement cost deviation over all inputs, i.e Cdev(A)

.
=

maxD(t) Cdev(A,D(t)).
The reposition cost evaluates the cost of repositioning the

resources, namely of transforming placement LA(t) to the
placement LA(t+ 1). The reposition cost, denoted as r(A),
counts the number of added and removed resources, and
therefore the reposition cost is the L1 distance between
LA(t) and LA(t+ 1), i.e

r(A, t)
.
=

m∑
i=1

k∑
j=1

|LA(t)ji − LA(t+ 1)ji |, (4)

(LA(t)ji - number of type-i resources in region j ). Finally, we

denote the reposition cost of A as the worst-case reposition
cost over all inputs, i.e. r(A)

.
= maxt r(A, t).

The goal of the dynamic placement problem is to develop a
dynamic algorithm whose reposition cost and cost deviation
are low.

Remark 3.2. In our model we assume that servers (of
the same type) are homogenous with respect to the number
of users a server can serve. We show in our technical re-
port [19] that if the servers are heterogeneous, then the static
resource placement is NP-hard using the hardness of set-
cover. Also, we prove that finding a c-approximation is also
NP-hard for c < (1 − o(1)) ln s. Therefore, every dynamic
algorithm A may derive a solution which suffers from a large
placement cost deviation of Cdev(A) = O(C(Lopt) · ln s).

4. SENSITIVITY OF DYNAMIC PLACEMENTS
In a dynamic environment one has to deal with the time

varying demands D(t) and with the need to recompute the
optimal placement and reposition the resources as the de-
mand changes. Our first major result shows that any al-
gorithm A that insists on recomputing the optimal place-
ment and reposition the resources accordingly at every time
t may be subject to very high reposition cost r(A) (see defi-
nition in Subsection 3.3). This holds even if the prior place-
ment computed by A, LA(t− 1), is optimal with respect to
D(t− 1) (i.e LA(t− 1) = Lopt(D(t− 1))) and the demands
sets D(t−1), D(t) are extremely close to each other. A high
reposition cost may be quite undesired since it may imply
that the system operations must be held due to lengthy repo-
sitioning.

In order to carry this analysis we derive a closed-form
formula for the static placement cost Cp(L), which can be
derived using methods similar to those used in [18].

4.1 Preliminaries: A closed-form formula for
the static placement cost

The static placement cost function as presented in Equa-
tion (2) is difficult to formulate in a closed-form formula.
A key element is a transformation of the (expected) service
cost from that equation, E|D(C(L)), into ”differential rev-
enue”, E|D(R(L)), which expresses the service cost in rel-
ative terms (e.g. cost of being served locally relatively to
being served remotely). We use the following definitions:

Definition 1. The local differential revenue constant
is the revenue gained from granting a type-i request locally
compared to granting it remotely, i.e Rloci

.
= Cremi −Cloci ≥ 0.

The global differential revenue constant is the revenue
gain from granting a type-i request remotely compared to not
satisfying the request, i.e Rgloi

.
= Cunsati − Cremi ≥ 0. We

define the service revenue as:

E|D(R(L)) =
m∑
i=1

Rgloi · E|Di(min(Bi · Li, Di)) + (5)

m∑
i=1

Rloci · [
k∑
j=1

E|
D

j
i
(min(Bi · Lji , D

j
i ))] (6)

To this end, we provide a closed-form formula for the
static placement cost using the following theorem:



Theorem 4.1. For every placement L, the static place-
ment cost is

Cp(L) = Cr(L) +

m∑
i=1

E(Di) · Cunsati − E|D(R(L)). (7)

.

To show the correctness of theorem we provide an optimal
assignment between a placement L = {Lji} and a demand re-

alization dji , called the Generalized Assignment Algorithm.
The Generalized Assignment Algorithm, which is a general-
ization of the Assignment Algorithm was given in [18], max-
imizes the number of locally granted requests in every area,
and then it grants remotely the other unsatisfied requests.
We prove in the technical report [19] that the number of type
i requests granted locally is gloci = min(Bi · Lji , d

j
i ), and the

number of type i requests granted globally (i.e, granted lo-

cally or remotely) is ggloi = min(Bi ·Li, di). Then, we prove
that

∑m
i=1 E(Di) ·Cunsati −E|D(R(L)) equals to the service

cost E|D(C(L)) defined in the model section (Section 3).

4.2 Analysis of Placement Sensitivity
To derive the sensitivity of resource placements we start

with the definition of strongly ε-near.

Definition 2. Given two vectors v̂ = (v1, . . . vn) and
û = (u1, . . . un), the L1-distance between them is d(v̂, û) =∑n
i=1 |vi − ui|. Given two discrete distributions N1, N2 de-

fined over the same support set {0, 1, 2 . . .}, and a parameter
k, we define the L1-CDF distance as the L1-distance be-
tween the CDF vectors of N1 and N2 over k elements, i.e
dk(N1, N2) =

∑k
n=0 |Pr(N1 ≤ n) − Pr(N2 ≤ n)|. The de-

mand sets D = {Dj
i }, D

′ = {D′ji} are called strongly ε-

near iff the following conditions hold: 1) Dj
i = D′

j
i for all

(i, j) 6= (i0, j0) and 2) d∞(Dj0
i0
, D′

j0
i0

) < ε.

In the following we show that an algorithm that insists
on using a static optimal placement at every time t may
incur very high reposition cost even if the demand varies
only slightly over time. This will result from the following
theorem stating that there exist demand sets D(t − 1) and
D(t) which are strongly ε-near while the difference between
their optimal placements, L(d(t)) and L(D(t − 1), implies
very high reposition cost.

Theorem 4.2 (Sensitivity in reposition cost). For
every ε > 0 there exist two demand sets D(t−1), D(t) which
are strongly ε-near while the L1-distance between the optimal
placements Lopt(D(t−1)) and Lopt(D(t)), is larger than the
maximum storage value i.e d(Lopt(D(t − 1)), Lopt(D(t))) ≥
maxj s

j.

A proof is given in the Appendix.

5. DYNAMIC PLACEMENT USING LAZY
ALGORITHM (LA)

To address the issue of a high reposition cost we provide
a dynamic algorithm called Lazy Algorithm (LA) and de-
noted as ALA, which avoids repositioning when the place-
ment cost deviation is small. Its operation is based on either
computing the static optimal placement at time t, and plac-
ing the resources accordingly, or by being lazy and keeping

the old placement. We prove that LA satisfies the follow-
ing conditions: 1) Its placement cost deviation (defined in
Subsection 3.3) Cdev(ALA) is bounded by a given threshold
ε, and 2) Its reposition cost stays 0, if the demand set D(t)
is close to the previous used set (which we called weakly
ε-near).

5.1 Description of the Lazy Algorithm
To introduce LA we present the following definitions:

Definition 3. Let D = {Dj
i }, D

′ = {D′ji} be two de-
mand sets. The demand-distance between D and D′, de-
noted as d(D,D′) is

d(D,D′) =

m∑
i=1

k∑
j=1

ds(Dj
i , D

′j
i )R

loc
i +

m∑
i=1

ds(Di, D
′
i)R

glo
i ,

(8)

where s is the system capacity, Rloci and Rgloi are respectively
the local and global differential revenue constants. This equa-
tion resembles Eq (5). Demands sets D and D′ are called
weakly ε-near if the distance between them is less than ε,
i.e d(D,D′) < ε.

LA is a simple lazy algorithm with a threshold parame-
ter ε. At time t LA holds a reference demand set Dref (t)
equaling D(τ) for some τ < t, where τ is the last time where
the algorithm modified its placement. It also holds as ref-
erence the optimal placement Lopt(D(τ)). The operation of
LA at t is simple: It compares Dref (t) with D(t) and checks
whether they are weakly ε-near; if they are, then the out-
put of LA, LA(t), is identical to LA(t − 1) and equals to
Lopt(D(τ)); otherwise LA computes the optimal placement
Lopt(D(t)) and sets this is as its output LA(t). In this latter
case LA also updates the reference demand set Dref (t) to
be D(t) and the reference optimal placement to Lopt(D(t)).
The optimal placement Lopt(D(t)) can be calculated by an
optimal placement algorithm We can use for this purpose
the BGA algorithm presented in [18].

5.2 Placement cost deviation theorem
We prove that LA has a low placement cost deviation,

even in the cases where it does not recompute the optimal
placement:

Theorem 5.1 (Placement cost deviation theorem).
Let ε be the threshold parameter of LA. If the demand refer-
ence Dref (t) and the demand D(t) are weakly ε-near, then
the cost deviation with respect to D(t) is bounded by ε, i.e,

Cdev(ALA, D(t)) = CD(t)
p (LA(t))− CD(t)

p (Lopt(D(t))) < ε.
(9)

The theorem is prove in the appendix using the following
techniques: 1) We reduce the static placement problem to a
min-cost flow problem, as presented in Section 6 below. 2)
We use the out-of-kilter algorithm [1] which derives from a
non-optimal flow f the min-cost flow fopt (associated with
the optimal placement for the reference demand) and show-
ing that it changes the flow weights (and therefore the static
placement cost) by at most ε.

By Theorem 5.1 we have the following corollary:

Corollary 5.2. LA satisfies the following properties: 1)
Its placement cost deviation is less than the threshold param-
eter ε, i.e Cdev(ALA) < ε, and 2) its reposition cost is 0 if
the demand sets are weakly ε-near.



Remark 5.3 (Competitive Ratio). In the online al-
gorithms literature, which is highly related to the dynamic al-
gorithms literature, the performance of an online algorithm
is measured by its competitive-ratio Ccomp(L), defined as
the worst-case ratio between the cost of the online algorithm
placement and the cost of the optimal offline placement, i.e,

Ccomp(L) = max
D(t)

C
D(t)
p (LA(t))

C
D(t)
p (Lopt(D(t)))

.

Note that this definition can be applied only if the cost func-
tion is always non-negative, which is not in our case. How-
ever, if we assume that the service revenue parameters are

positive (i.e, Cloci > 0) then our cost function C
D(t)
p () is

non-negative. In this case, the competitive-ratio of LA is
ε

min
D(t)

CD(t)
p (Lopt(D(t)))

+ 1. Note also that the cost of every

placement must be larger than the cost of the hypothetical
case where every request is grented locally. Thus

C
D(t)
p (Lopt(D(t))) ≥

∑m
i=1E(Di) · Cloci > 0 and therefore

LA is bounded from below by a constant competitive-ratio
of ε∑m

i=1 E(Di)·Cloc
i

+ 1.

5.3 Computing demand-distance in LA
To compute the demand-distance between Dref (t) = D

and D(t) = D′, one will need to go over all resource types
i and regions j and compute the L1-distance with param-
eter s between Dj

i and D′
j
i . Computing the L1-distance

should take O(s), and computing the demand-distance takes
O(skm).

In particular distributions one can compute the demand-
distance faster than O(skm). For example, if the demand

distributions are bounded by some constant, i.e, Pr(D′
j
i ≥

C) = Pr(Dj
i ≥ C) for some constant c << s. In this case,

computing the demand-distance can be done in O(ckm).
Another interesting property is when one distribution dom-

inates the other. Formally, distribution D1 dominates D2

if Pr(D1 ≥ n) ≥ Pr(D2 ≥ n) for every value n ≥ 1. In the
following Claim we show that if the distributions D1 and
D2 are either Poisson or Binomial, then one dominates the
other :

Claim 5.4. The following holds: 1) If D1 ∼ Poiss(λ1), D2 ∼
Poiss(λ2), where λ1 > λ2 then D1 dominates D2. 2) If
D1 ∼ Bin(n, p1), D2 ∼ Bin(n, p2), where p1 > p2 then D1

dominates D2.

In case where one distribution dominates the other the L1

distance can be shown to be equal to the expected values of
the distributions:

Claim 5.5. If D1 dominates D2 then d(D1, D2) = E(D1)−
E(D2).

Following Claim 5.5 we may conclude that if some of the
distributions pairs, Dj

i and D′
j
i , obey pair-wise dominance,

the distance between them can be computed in O(1) oper-
ations, and the over all demand distance computation may
reduce significantly from O(skm). If all distribution pairs
admit pair-wise dominance then the over all demand com-
putation drops to O(km).

5.4 Drawbacks of LA

Although the LA algorithm provides us a tradeoff between
the reposition cost and the placement cost deviation, it may
encounter high reposition costs and run-time complexity un-
der demand sets that are weakly ε-far. First, since the repo-
sition cost is not bounded (see Theorem 4.2), LA may incur
very large reposition cost, which is impractical. In our simu-
lations presented in Section 9 we show that LA incurs large
reposition cost. Second, LA uses the static placement algo-
rithm which incurs a high computational complexity.

To overcome these difficulties we present the Shortest Cycle-
Canceling algorithm (SCC), which reduces the placement
cost deviation under a bounded reposition cost. A key build-
ing block for SCC is the reduction of the static placement
problem into the min-cost flow problem, described next.

6. REDUCTION OF THE STATIC PLACE-
MENT PROBLEM INTO A MIN-COST
FLOW PROBLEM

Here we solve the static placement problem to allow us
to prove Theorem 5.1 and is a building block for developing
SCC.

We first begin with defining the loss function whose prop-
erties are a key for solving the static (and dynamic) place-
ment problem. Note the techniques shown here generalize
the methods which [18] used the simplified model. How-
ever, we used a more generalize approach to solve the static
problem.

6.1 The loss function and its properties
The key to show the reduction the loss function we define

the loss function simply as the difference between the place-
ment cost function Cp(L) and the constant

∑m
i=1E(Di) ·

Cunsati , i.e, lossp(L) = Cp(L) −
∑m
i=1E(Di) · Cunsati . The

optimal placement minimizing the static placement cost Cp
must minimize the cost.

According to Eq 7 the loss is equal to:

lossp(L) = Cr(L)− E|D(R(L)). (10)

.
To show the loss function special properties we define the

following definitions:

Definition 4. Let f : Nm·k → R be a discrete function.

1. f is called semi-separable iff there exists a set of dis-
crete functions {f ji }, {fi}, {f

j} such that f is expressed
by the following formula

f(L1
1, L

1
2, . . .) =

m∑
i=1

k∑
j=1

f ji (Lji )+

m∑
i=1

fi(Li)+

k∑
j=1

f j(Lj),

(11)

where Li =
∑k
j=1 L

j
i , and Lj =

∑m
i=1 L

j
i . The set

M(f) = {f ji }
⋃
{fi}

⋃
{f j} is called the marginal func-

tions of f .

2. Given a one-dimensional discrete function g : N → R,
define its differential function ∆g as the difference
between its successive values, i.e ∆g(n) = g(n)−g(n−
1) for n ≥ 1. The function g is called convex if its dif-
ferential function ∆g is monotonically non-decreasing,
i.e, ∆g(n) ≥ ∆g(n+ 1) for all n ≥ 1.



3. A semi-separable function f is is called convex if its
marginal functions fi,f

j,f ji are convex.

In Section 3 we assumed that the resource cost, Cr(), is
a semi-separable function. This means that there exists a
set of marginal functions Mζ(Cr) = {ζji }

⋃
{ζi}

⋃
{ζj} such

that

Cr(L) =

m∑
i=1

k∑
j=1

ζji (Lji ) +

m∑
i=1

ζi(Li) +

k∑
j=1

ζj(Lj). (12)

In the linear resource cost example presented in Eq (1)
the marginal functions are simply ζji (Lji ) = Lji ·p

j
i , ζ

j(Lj) =
Lj · hj and ζi(Li) = Li · ri.

In the technical report [19] we prove the following claim:

Claim 6.1. The loss function lossp is semi-separable and
convex.

Thus, there exists a set of marginal convex functionsMγ(lossp)

such that lossp(L) =
∑m
i=1

∑k
j=1 γ

j
i (L

j
i ) +

∑m
i=1 γi(Li) +∑k

j=1 γ
j(Lj).

6.2 Introduction to the min-cost flow problem
We start describing the min-cost flow problem [6],

which is a generalization of the notable max flow problem.
This problem is similar to the max-flow problem (see [8]),
where we considers a directed graph G = (V,E) where every
edge e ∈ E has integer capacity c(e). In addition, every
edge is associates with a real-value weight w(e) (alterna-
tively, called cost). Given a flow f (defined similarly to the
max flow problem), we define f(v) =

∑
u|(u,v)∈E f(u, v) =∑

u|(v,)∈E f(v) as the flow in node. The flow value of f as

the flow in the source x (and sink y), |f | =
∑

(x,v)∈E f(x, v) =∑
(v,y)∈E f(v, y). The weight (or cost) of flow f is w(f) =∑
e∈E f(e)w(e).
The classic min-cost flow problem with required flow
|f | = k is to find a flow fopt(k) of value k that has minimal
weight among all flows of value k. This means that for every
flow f ′ such that |f ′| = |fopt(k)| = k we have w(fopt(k)) ≤
w(f ′).

6.3 Reduction of the placement problem to a
min-cost flow problem

Given the loss function lossp with its marginal functions
Mγ(loss), we define the marginal-differential functions
{∆γji }

⋃
{∆γi}

⋃
{∆γj} simply as the differential of the cor-

respond marginal functions {γji }
⋃
{γi}

⋃
{γj}. The follow-

ing claim regarding the marginal differential functions is
straightforward:

Claim 6.2. The marginal-differential functions ∆γ can
be calculated using the following equations:

∆γj(n) = ζj(n)− ζj(n− 1) (13a)

∆γji (n) = ζji (n)− ζji (n− 1)−
Bi∑
k=1

Rloci Pr(Dj
i ≥ n ·Bi + k)

(13b)

∆γi(n) = ζi(n)− ζi(n− 1)−
Bi∑
k=1

Rgloi Pr(Di ≥ n ·Bi + k).

(13c)

In a linear resource cost function (Eq (1)) the marginal-
differential functions are equal to ∆γj(n) = hj , ∆γji (n) =

pji − R
loc
i Pr(Dj

i ≥ n · Bi) and ∆γi(n) = ri − Rgloi Pr(Di ≥
n ·Bi).

Remark 6.3. The marginal-differential ∆γ(n) are 1) mono-
tonically increasing, which stems from the fact that the loss
is convex (see Claim 6.1), and 2) are negative if the addi-
tion the nth resource benefits the system i.e, has a negative
marginal cost.

We reduce the placement problem to a min-cost problem
using the graph given in Fig. 2 as follows: We define a di-
rected 8-layer graph G8 = (V 8, E8). On every edge a pair
c(e), w(e) so that c(e) is the capacity function (presented
in olivegreen color) and w(e) is the weight function. The
graph is composed from the following 8 layers: The source
x, the (area, #resources) layer, the area layer, the (area,
type) layer, the (area, type, #resources) layer, the type
layer, the (type, #resouces) layer, and finally the sink y.
We also connect the source x to the sink y.

In the graph we denote area j by aj , type i by ti, and
#resouces by a number. The (area, #resouces), (area, type,
#resources) and (type, #resources) layers, for example, are
respectively composed of nodes (aj , n) (where 1 ≤ j ≤ k
and 1 ≤ n ≤ sj), (aj , ti, n) (where 1 ≤ j ≤ k, 1 ≤ i ≤ m
,1 ≤ n ≤ sj) and (ti, n) (where 1 ≤ i ≤ m and 1 ≤ n ≤∑k
j=1 s

j). The entering edges to nodes (aj , x), (aj , ti, x)

and (ti, x) have respectively the marginal-differential weight
∆γj(x), ∆γji (x) and ∆γi(x) with capacity of 1. All other
edges have weight 0 with capacity ∞.

Finding the min-cost flow on G yields the optimal place-
ment as presented in the following lemma:

Lemma 6.4. Let fopt be the min-cost flow in G8 with a

required flow of |f | =
∑k
j=1 s

j .
= s. Let L be a placement

with components equal to the flow in nodes (aj , ti), i.e Lji =
fopt(a

i, tj). Then L solves the placement problem.

The correctness of the lemma, presented in the techni-
cal report [19] stems from the fact that 1) the marginal-
differential weights are monotonically increasing 2) every
flow has an equivalent placement, as presented in the fol-
lowing claim:

Lemma 6.5. Let P be a placement. We define a flow
f(P ) such that 1) The disjoint paths x-(aj , n)-aj, (aj , ti)-
(aj , ti, n)-ti, ti-(ti, n)-y are assigned respectively with one
unit of flow if P j ≥ n, P ji ≥ n and Pi ≥ n; Otherwise, the
correspond path is assigned with zero unit of flow. 2) The
flow between (aj , ti), and (aj , ti) is P ji . 3) The flow between

x and y is s−
∑m
i=1

∑k
j=1 P

j
i .

Then the cost of f(P ) equals to the cost of P

7. DYNAMIC PLACEMENT UNDER REPO-
SITION CONSTRAIN- SCC ALGORITHM

The reduction provided in the previous section implies
that one can use an optimal min-cost flow algorithm to solve
the static placement problem. One particular algorithm for
solving the optimal min-cost flow problem, is the well known
Cycle-Canceling algorithm, that cancels in every iteration a
negative cycle, which reduces the cost of the flow associated
with the placement. We will utilize this property to modify
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Figure 2: The 8-layer graph . Note that the edge weights, which are the marginal-differential functions
defined in Claim 6.2, can be negative.

a (previously determined) placement and adapt it to new
demand distribution.

The Shortest Cycle-Canceling (SCC) algorithm we pro-
pose for the dynamic placement problem is a variation of
the well-known Cycle-Canceling algorithm that finds a nega-
tive cycle with the minimal number of edges. To implement
SCC, we combine the Cycle-Canceling algorithm with the
Shortest negative Cycle (SnC) algorithm that uses dy-
namic programming for finding the shortest negative cycle
(i.e, with minimal number of edges).

SCC is a dynamic Cycle-Canceling algorithm with a thresh-
old parameter r. SCC ensures that given an initial place-
ment L(t− 1) computed at time slot t− 1, it finds an place-
ment L(t) such that 1) the reposition cost is always less than

or equal to r, i.e,
∑m
i=1

∑k
j=1 |L(t)ji −L(t+ 1)ji | < r. 2) The

placement cost deviation of L(t+1) with respect to D(t+1)
is smaller than that of L(t) .

SCC finds a minimal (in number of edges) cycle, so it can
augment many cycles as possible.

7.1 Preliminaries: Cycle-Canceling algorithm
The well-known Cycle-Canceling algorithm solves the min-

cost flow problem for general graphs. Given a flow f on a
graph G = (V,E), the Cycle-Canceling algorithm uses the
residual graph Gf = (V,Ef ). On the residual graph edges
one defines weight wf and capacity cf . Then, the residual
graph Gf is constructed from graph G and from flow f by
the following steps: 1) Add to Gf edges from G, such that
edge (v, v′) ∈ E will have weight wf (v, v′) = w(v, v′) and
capacity of cf (v, v′) = c(v, v′) − f(v, v′). 2) Add the re-
verse edges of G. That means, if (v, v′) ∈ E, then add edge
(v′, v) to Gf with weight wf (v′, v) = −w(v, v′) and capac-
ity of cf (v′, v) = f(v, v′). Note that for every edge e in Gf
we have c(e) ≥ 0. 3) For every edge e ∈ Ef with capacity
c(e) = 0 set its weight to be wf (e) =∞. Finally, a cycle C
is called negative if the sum of its weights is negative, i.e,
w(C) =

∑
e ∈ Cw(e) < 0.

Detecting a negative cycle is a key building block for
Cycle-Canceling. The Cycle-Canceling algorithm can spec-
ify which negative cycle detection it will use. For example,
it can use the Bellman-Ford algorithm that finds some
negative cycle, or Karp’s algorithm that finds a negative

cycle with respect to a minimal mean value. The running
time of using the Cycle-Canceling algorithm is effected by
the negative cycle it finds: if one uses Bellman-Ford then
the time complexity of the Cycle-Canceling algorithm might
be unbounded, while using Karp’s algorithm on a graph
G = (V,E) it is at most O(|V ||E|2 log |V |) [1].

The Cycle-Canceling algorithm works iteratively, and in
the ith iteration it finds a negative cycle in Gf . It executes
the following steps in every iteration: 1) Find a negative
cycle C in Gf using some negative cycle detection algorithm.
If there is no negative cycle then the algorithm terminates.
2) We augment the flow by δ = min cf (e)|e ∈ E > 0 units of
flow through C. That means that if (v, v′) = e ∈ C is in the
original graph (i.e e ∈ E) then we update f(e) ← f(e) + δ,
and if the reverse edge in G (i.e (v′, v) ∈ E) then we update
f(v′, v) ← f(v′, v) − δ. 3) We update a new residual graph
Gf according to the updated flow f .

The following theorem is established in [1]:

Theorem 7.1. 1) In every iteration of the Cycle-Canceling
algorithm the cost of the flow decreases. 2) If there is no
negative cycle in Gf then f is a min-cost flow

7.2 Cycle-Canceling Example
In the following example we demonstrate how canceling a

negative cycle improves the placement cost according to the
new demand. Consider for instance a placement of time slot
t−1, L(t−1), with two areas (k = 2), and two resource types
(m = 2). For every area j the number of type-i resources is
2 i.e, L1

1(t− 1) = L2
1(t− 1) = L1

2(t− 1) = L2
2(t− 1) = 2. Of

course the number of resources in every area is L1 = L2 = 4.
We assume that every server can serve one request (Bi = 1).
We set the resource cost Cr(L) to zero (i.e, ζj(x) = ζji (x) =
ζi(x) = 0 for every x ≥ 0). Due to the new demand D(t),

the edges weights in the 8-layer residual graph Gf8 change,
and new values are set according to Eq. 13. For instance, the
edge weight between the node (a1, t1, 3) and a type node t1
are set to ∆γ1

1(3) = −Pr(D(t)11 ≥ 3).As the residual graph
G8
f adds reverse edges to the 8-layer graph G8 from Fig. 2, it

contains an edge between a type node t1 and node (a2, t1, 2).
The weight of that edge is set to −∆γ2

1(2) = Pr(D(t)21 ≥ 2).
Note that ∆γ1

1(3) represents the marginal cost of adding the
third type-1 resource to area 1, while −∆γ2

1(2) represents
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f

the marginal cost of removing the second resource from area
2.

In our example, we assume the following values for de-
mand distribution D(t): ∆γ1

1(3) = −Pr(D(t)11 ≥ 3) = −0.6
and −∆γ2

1(2) = Pr(D(t)21 ≥ 2) = 0.4. In Fig. 3 we depict
a cycle which represents adding a type-1 resource in area 1
and removing a type-1 resource in area 2. Augmenting flow
through the cycle will decrease the cost of the placement by
∆γ1

1(3) − ∆γ2
1(2) = −0.2. It will add a type-1 resource in

area 1 (with marginal cost of ∆γ1
1(3)) and remove a type-1

resource in area 2 (with marginal cost of −∆γ2
1(2)). After

we update the flow, its associated placement (computed by
Claim 6.5) will contain three type-1 resources in area 1, and
a single type-1 resource in area 2.

As we set the resource cost Cr(L) to be zero, we get that
the areal marginal cost of adding the kth resource (from
every type) to area 1, which is the edge weight between x
and (a1, k), is ∆γ1(k) = 0 for every k ≥ 1. Removing the
kth resource from area 2, which is the edge weight between
(a2, k) and x, equals to −∆γ2(k) = 0.

Note that the cycle involves only two edges (one forward
and one backward) between layer 4 and 5, implying shifting
exactly 1 resource. Augmenting paths that involve shifting
k resources will have k forward edges and k backward edges
between layer 4 and 5.

7.3 Shortest negative Cycle (SnC)
The Shortest negative Cycle (SnC) algorithm finds the

negative cycle with minimal number of edges. Let G =
(V,E) be a general directed graph with a weight function
w defined over the graph edges E. In the lth iteration it
computes a matrix A(l), such that Aji (l) is the cost of the
shortest path between i ∈ V and j ∈ V , among all shortest
paths with l edges. One can compute the matrix A(l) using
the following formulas:

Aji (1) =

{
w(i, j) when (i, j) ∈ E.

∞ otherwise.

Aji (l) = min
k|(k,j)∈E

(Aki (l − 1) + w(k, j)) for l ≥ 2.

(14)

Note that computing Aji for every pair (i, j) costs O(dj)
operations, where dj is the outgoing degree of vertex j.
Thus, the complexity of one iteration isO(

∑
i∈V

∑
j∈V dj) =

O(|V | · |E|)).
SnC is an iterative algorithm that computes the matrix

A(l) in the lth iteration. It finds lmin such that there exists a
vertex i ∈ V with a negative shortest distance of length lmin

, i.e, Aii(lmin) < 0. Next, SnC computes a vertex i0 with
minimal cost, i.e, i0 = arg miniA

i
i(lmin) < 0. To return

the negative cycle, we compute the parent array p(j), such
that p(1) = p(lmin) = i0 and p(l) = arg mink A

k
i (j − 1) +

w(k, p(l + 1)) for 1 < l < lmin.
Note that if after |V | iterations SnC did not find a negative

cycle(i.e, Aii(l) ≥ 0 for every l, i), then the graph G does not
contain one.

The following claim, which states the run time complexity
of SnC, is proved in a technical report [19]:

Claim 7.2. SnC determines whether G contains a neg-
ative cycle. If such cycle exists- it computes the minimal
negative cycle in running time of O(lmin|V ||E|), where lmin
is the number of edges in the negative cycle. Otherwise - the
running time is O(|V |2|E|).

Remark 7.3. A related problem to the Shortest negative
Cycle problem is that of finding a simple negative cycle of
minimal cost, which is defined as the sum of its edge costs.
This problem was proved to be NP-complete (A proof can be
seen in the technical report [19]).

7.4 The Shortest Cycle-Canceling algorithm
(SCC)

SCC is a dynamic Cycle-Canceling algorithm with a thresh-
old parameter r. Initially, the algorithm builds the residual
graph of the 8-layer graph G8

f with respect to the demand
at time t, D(t), and the flow finit representing the place-
ment at t− 1, L(t− 1). In every iteration SCC holds a flow
fprev of the previous iteration, where in the first iteration
we set fprev = finit. SCC uses SnC to find the shortest
negative cycle in Gf , denoted as C. If there exists no cycle
then fprev is a min-cost flow, and its associated placement
Lji = fprev(ai, tj) must be the optimal-cost placement with
respect to demand D(t).

We obtain fcurr from augmenting the flow trough cycle C.
We check whether the placement associated with fcurr vio-
lates the reposition cost constraint , i.e,

∑m
i=1

∑k
j=1 |L(t− 1)ji−

fcurr(a
i, tj)| < r. If so- then the algorithm set the placement

for the next time slot L(t) to be the placement associated
with the previous flow fprev. Otherwise, the algorithm will
set fprev = fcurr and will continue until fcurr will violate
the reposition cost constraint.

The following theorem, which is proved in the technical
report [19], establishes the properties of SCC:

Theorem 7.4. Let r be the threshold parameter of SCC.
Then the following conditions hold: 1) SCC decreases the
cost of the placement in every iteration. 2) The reposition
cost of SCC is at most r. 3) If there exists no negative cycle,
then SCC returns the optimal placement.

SCC finds a minimal (in number of edges) cycle, so it
can augment many cycles as possible, without violating the
reposition cost constraint .

7.5 Reducing the complexity of SCC
The one major problem of SCC is its time complexity.

One iteration of SnC, which is used for finding a negative
cycle, costs O(lmin|V ||E|) (See Claim 7.2). In the case of
the 8-layer graph Gf , |V | = |E| = O(smk), where s is the
total capacity of the system, m is the number of resource
types and k is the number of areas. The time complexity of
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Figure 4: The bipartite-like graph GBf

one SnC iteration is therefore O(s2m2k2) which practically
can be quite large.

To reduce the time complexity we use a reduction of the
8-layer graph G8

f to a bipartite graph, which removes un-
necessary nodes in the graph. We then imitate the actions
of SCC over the bipartite graph. This method is similar to
the one used in [18], which imitates the Successive Short-
est Path algorithm (an algorithm solving the min-cost flow)
over the bipartite graph.

The bipartite-like graph, denoted as GBf = (V B , EBf ),

is a sub-graph of the 8-layer residual graph G8
f constructed

from the 8-layer graph G8 (i.e V B ⊆ V 8). The graph, de-
picted in Fig. 4, resembles a bipartite graph, excluding the
source x and sink y nodes. The graph contains a layer con-
sists of area nodes aj , and a layer consists of resource type
nodes ti.

The edge weight between u and v in the bipartite-like

graph, which is denoted by wf (u
min→ v), equals to the short-

est minimal path between u and v in G8
f (formal definition

given in [18]). Given vertices u, v computing wf (u
min→ v)

can be done in O(1) (as shown in the technical report [19]).
Imitating the behavior of SCC over the bipartite graph

will reduce the time complexity of an SnC iteration to only
O(mk(k+m)). If we bound the total number of SnC itera-
tion by c << s, then the time complexity of SCC is at most
O(cmk(k+m)). This can be significantly more efficient than
running optimal algorithm for the static problem that runs
in O(smk(m+ k)).

7.6 Practical Considerations and a General
Algorithm

SCC as designed above aims at bounding the reposition
cost incurred in any operation of the algorithm. As such
SCC operates regardless of the placement cost deviation,
and there might be situations where the application will
yield resource reposition whose placement cost deviation is
tiny. Such repositions can be avoided using a Hybrid algo-
rithm which combines LA with SCC, presented in the next
Section.

8. THE HYBRID ALGORITHM
In this section we provide a general (Hybrid) algorithm

which combines the mechanisms of LA and SCC.
The Hybrid algorithm holds four threshold parameters ε,

rmin and rmax, where rmin < rmax. At time t LA holds a
reference demand set Dref (t) equaling D(τ) for some τ < t,
where τ is the last time where the algorithm modified its
placement. It also holds as reference the placement at time

t− 1, L(t− 1). Given distributions Dref (t), D(t) and place-
ment L(t−1) the algorithm computes the placement at time
slot t, L(t). The algorithm determines whether D(t) and
Dref (t) are weakly ε-near. If they are - we run SCC over
placement L(t−1) (with its associated flow), with the repo-
sition cost threshold set to rmin. Otherwise, we run SCC
over placement L(t − 1) with the reposition cost threshold
set to rmax.

Note that we can set rmin = 0, and rmax =∞ then which
is equivalent for running LA with ε. If we set only ε = 0
(and rmax to any value), then it is equivalent to SCC with
rmax.

9. PERFORMANCE EVALUATION OF THE
DYNAMIC ALGORITHMS

In this section we evaluate the performance of the dynamic
algorithms presented in this article; for the sake of providing
a scale of reference we compare them with the Proportional
Mean placement - A replication strategy proposed in [20].
We simulate a small-size mobile game app (whose audience
consists of about at most 9000 users) that uses Amazon EC2
servers. Some of the parameter settings can be found in the
appendix.

9.1 Parameter Settings
The mobile app provider places its servers in k = 3 re-

gions of Amazon EC2: One in the USA (North Carolina),
the other in Europe (Ireland) and the third in Asia (Singa-
pore). The application provider offers two different appli-
cations (m = 2), each requiring different type of platform
from the service provider: One is the a Windows platform,
while the other is a Red Hat Enterprise Linux (RHEL) plat-
form. We assume that both a windows and a RHEL server
can serve up to Bwindows = BRHEL = 500 users. Due to
EC2 limit on on-demand servers, the application provider
cannot buy more than 20 servers per region,(see [4]), i.e, we
bound the capacity of number of servers to 20 in the USA
(s1 = 20), 20 in Europe (s2 = 20) and 20 in Asia (s3 = 20).
The provider uses a single instance - the m3.medium VM
(see [4]). As explained in Remark 3.2, solving the static
resource placement with more than a single instance is NP-
hard.

The cost associated with serving a user can be defined as
minus the Average Revenue Per User (ARPU) of granting
the request (see Remark 3.1). The ARPU is varies between
mobile applications as seen in [13]. We assume that the
ARPU of the Windows application is 1.5$ (i.e, the cost is
−1.5$), and the ARPU of RHEL application is 1$, as done
in other mobile applications (See [13]). The exact details of
the service costs can be found in Table 1 at the appendix.

Finally, we define the resource cost Cr(p) to be the lin-
ear function as set in Eq 1. We set the on-demand price of
resource type i in area j according to Amazon EC2 price
system on the m3.medium VM [4]. In Table 2 in the ap-
pendix we define the on-demand costs pji . Note that when
using Amazon EC2 servers there is no need to pay licensing
costs and area-specific charges i.e,(ri = hj = 0).

We set the total number of requests of resource type i in
area j on time t, Dj

i (t), to be a time-dependent Poisson dis-

tribution with parameter of λji (t) (as done in [14] and [23]).
Our dynamic scheduling uses an hourly based predication,
where in every area the average number of requests for Win-



dows and RHEL servers is the same i.e, λjRHEL(t) = λjWindows(t).
We set the demand parameter to be a periodic function that
increases during day time , and decreases during night time
(usually, between 4 Pm till 4 Am) as done in many appli-
cations (such as [23]). Also, in some web applications (such
as [7]) the arrival rate is considered to be unpredictable with
a higher variability due to some noise factor. In order to sim-
ulate such arrival rates, we add a Additive White Gaussian
Noise (AWGN) to the arrival rate formula.

Finally, the arrival rate is

λji (t) = 3000 · sin(
tj · π

24
) + 300 · ζ, (15)

where ζ is a white noise, generated by the standard Gaussian
(Normal) distribution, and tj is the local time at area j.

Finally, given a time slot t, we compute the local time in
the USA by tUSA = (t mod 24), the local time in Europe
by tEurope = ((t + 6) mod 24), and in Asia tAsia = ((t +
12) mod 24).

9.2 Performance of the dynamic algorithms
over time varying predicted demands

We evaluate the placement cost deviation and the repo-
sition cost with an arrival rate of λji (t) (given in Eq. 15)
over a time scale of t = 0, 1, . . . , 47 between the follow-
ing algorithms: 1) The optimal static placement (BGA).
2) The LA algorithm (Section 5) with threshold ε = 2000$
. 3)The SCC (Section 7) with reposition cost r = 4. 4)
The Hybrid algorithm (Section 8) with thresholds ε = 2000$
,rmin = 2, rmax = 4. 5) An placement strategy called Pro-
portional Mean, as proposed in [20], where the number
of type-i servers allocated in every area j is proportional
to demand, i.e, there exists a constant α > 0 such that
Lji (t) = α · E(Dj

i (t)). For our simulations we set α = 1.2.
The placement allocated in time t = 0 is the optimal static
placement respect to demand D(t) = D(0).

In Fig. 5 we depict the Relative Reposition Cost (RRC).
The Relative Reposition Cost defined as the reposition cost
divided by the number of servers placed. The RCC repre-
sents the percentage of servers that were changed. In Fig. 5
we depict relative reposition cost.

We observe the following results: 1) The Hybrid algorithm
incurs the lowest reposition cost of at most 10%, and some-
times 0% (i.e, no reposition between successive time slots).
The Hybrid has the lowest average reposition cost of the
only 5.7%, while the optimal static cost placement and Pro-
portional Mean have respectively 15.8% and 16.8%. That
means, the average reposition cost of Hybrid algorithm is
65% lower than the the one the average reposition cost of
the optimal placement and Proportional Mean. 2) Propor-
tional Mean and the optimal static cost placement incur
a large reposition cost, ranging 10% − 20%. 3) LA incurs
highly variable reposition cost: when LA changes the current
placement using the optimal static placement algorithm, it
incurs a high relative reposition cost (sometimes by 70%). If
LA does not changes the placement - the relative reposition
cost is 0%. 3) SCC has (almost) a constant reposition cost,
which is always around 10%. Its average reposition cost is
9.8%, which is higher than the Hybrid algorithm by a factor
of 1.7.

Next we examine whether the fact that our main algo-
rithm (Hybrid) operates under reposition constraints, allows
it to achieve close to optimal placements. To this end we
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Figure 6: Relative Placement Cost

depict in Fig. 6 the relative deviations of a placement
cost for all the algorithms examined; the relative deviation
of placement cost is defined as the deviation of placement
cost divided by the cost of the static optimal placement. We
observe that the cost of every dynamic algorithm placement
is higher only by a margin of 1% − 5%. Note that the Hy-
brid placement algorithm achieves very efficient placements,
whose cost deviation is bounded by 1.3%, while obeying
strict reposition cost constraints.

In Fig. 7 we depict the real cost deviation and observe the
following results: 1) The Hybrid algorithm has a cost devi-
ation of at most 200$ per hour (better than Proportional
mean and LA), with average daily cost deviation of 2153$
(and 64, 610$ per month). 2) LA reposition cost has high
variability, and contains large ”spikes”, which are dependent
whether LA changes the placement in time t or not (which
is done according to the demand distance between D(t− 1)
and D(t)). If LA changes the placement - then an optimal
static placement algorithm was applied, and the cost devi-
ation is 0. However, if the placement was not changed - it
can incurs a relatively high maximal cost deviation of 700$
per hour. LA has a high daily cost of 2419$ (and 72, 569$
per month) 3) SCC has a minimal cost deviation between
the different algorithms across time, and with a low vari-
ability. The placement cost of SCC is closer to the optimal
static value than the other non-optimal algorithm. Its max-
imal placement cost deviation is at most 130$ per hour (the
lowest among all algorithms), and it has the lowest daily
cost deviation of 1471$ per day (and 44, 147 per month). 4)
The cost deviation of proportional mean replication has high
variability. It has maximal cost deviation of 400$ per hour,
and an average cost deviation of 2087.95$ per day (62, 638$
per month).

9.3 Performance Evaluation - conclusions
We observed that the Hybrid algorithm has the lowest

maximal reposition cost and the lowest average reposition
cost. The average reposition cost is lower by 65% than the
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optimal static placement, as well as Proportional Mean. The
relative deviation cost of the Hybrid algorithm is at most
1.3%, better than Proportional Mean or LA.

Although SCC has better reposition cost than the Hy-
brid algorithm, it has a higher reposition cost. LA in every
time slot has a high reposition cost (when it changes the
placement) or a high placement cost deviation (when it not
changes the placement). Proportional mean, as well as op-
timal static placement, have a high reposition cost.

10. CONCLUDING REMARKS
We dealt with the problem of dynamic resource place-

ment, accounting for dynamically changing stochastic de-
mands with arbitrary distributions as well as for a very rich
cost model. We showed that dynamic demand fluctuations
may inflict huge reposition costs and therefor a dynamic
placement algorithm must account for them. To address
this problem we proposed an algorithm that avoids resource
reposition when the cost benefits are tiny and conducts a
bounded reposition when the cost benefits are substantial.
The algorithms proposed are of practical complexity despite
the high dimensionality of the problem.
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APPENDIX
The assignment algorithm
In order to present the assignment algorithm and the cor-
rectness of Theorem .1 we define the following definitions:

Definition 5. Let M be a matching between a place-
ment L = {Lji} and a demand realization dji . Let gloci (M),
gremi (M) respectively denote the number of type-i requests
granted locally and remotely under the matching algorithm
M . The number of type-i requests granted globally (i.e,

remotely or locally) is denoted by ggloi (M)
.
= gremi (M) +

gloci (M). We define the local differential revenue con-
stant as the revenue gained from granting a type-i request
locally compared to granting it remotely, i.e Rloci

.
= Cremi −

Cloci ≥ 0. The global differential revenue constant is
the revenue gain from granting a type-i request remotely
compared to not satisfying the request, i.e Rgloi

.
= Cunsati −

Cremi ≥ 0. The matching revenue of M , denoted by R(L, dji ,M),

is defined as R(L, dji ,M) =
∑m
i=1(Rgloi · ggloi (M) + Rloci ·

gloci (M)). The maximal revenue value R(L, dji ) is the

maximum value of the matching revenues R(L, dji ,M) over
all possible matchings M . We define the service revenue
as the expected maximal revenue value, over all demand re-
alizations, i.e E|D(R(L)) =

∑
R(L, dji ) · Pr(Dj

i = dji ).

We first prove that one can convert the service revenue to
a service cost by the following claim:

Claim .1. For every placement L we have

E|D(R(L)) + E|D(C(L)) =

m∑
i=1

Cunsati Di. (16)

Proof Proof of Claim .1. Consider {dji} a demand re-
alization, and M be an assignment between the demand and
a placement L. We define the matching cost of M simply as

C(L, dji ,M) =

m∑
i=1

Cloci ·gloci (M)+Cremi ·gremi (M)+Cunsati ·gunsati (M)

(17)
where gloci (M), gremi (M) and gunsati (M) are respectively the
corresponding number of type-i requests granted by M from
a local area, granted from a remote area, and unsatisfied
ones. Similarly to the revenue case, we define the minimal
service cost between placement L and realization {dji} as
the optimal assignment minimizing the matching cost i.e
C(L, dji ) = arg minM C(L, dji ,M).

We will prove that the total sum, which simply as the sum
of the cost matching and the revenue matchingR(L, dji ,M)+

C(L, dji ,M) is constant. Consider the marginal value of a
type-i request reqi in the total sum according to the follow-
ing cases:

1. If reqi is granted locally, then it is also granted glob-
ally. Thus its marginal value of the matching revenue
is Rloci +Rgloi = Cunsati −Cloci , and the marginal value
in the total sum equals to Cunsati .

2. If reqi is granted remotely, then it is granted globally
but not locally. Thus its marginal value of the matching
revenue Rgloi = Cunsati − Cremi and in the total sum
Cunsati .

3. If reqi is an unsatisfied request, then it nor granted
globally or locally. Thus, its marginal value of the

matching revenue is 0 and the marginal revenue in the
total sum is Cunsati .

Thus every type-i request has a marginal value of Cunsati

to the total sum. This implies that total sum equals to
C(L, dji ,M) + R(L, dji ,M) =

∑m
i=1 C

unsat
i Di., where Di is

the number of type-i requests. Note that
∑m
i=1 C

unsat
i Di is

independent of the matching M . Thus, a matching M0 that
maximizes matching revenue (i.e R(L, dji ,M0) = R(L, dji ))

must minimize the matching cost (i.e C(L, dji ,M0) = C(L, dji ).
Therefore,

C(L, dji )+R(L, dji ) = C(L, dji ,M0)+R(L, dji ,M0) =

m∑
i=1

Cunsati Di.

(18)
Taking expectation over the demand set D yields the the-

orem statement.

Finally, to present the assignment algorithm, we call a
type-i resource partial-loaded if the number of requests as-
signed to resource is strictly less than its capability Bi. If
the number of requests assigned to resource equals to its
capability, then the resource is called fully-loaded.

In Algorithm 1 we derive a specific matching algorithm
tailored for maximizing the revenue matching.

Algorithm 1 The assignment algorithm

Require: An placement L = {Lji}, the demand realization

dji , and resource capacities Bi.
1: for all movie i do
2: for all region j do
3: Assign min(Bi · Lji ,d

j
i ) type-i requests from area j

to min(Lji ,

⌈
d
j
i
Bi

⌉
) type-i resources in area-j.

4: end for
5: while There is an unmatched type-i request and a

type-i partial-loaded resource do
6: Match the request with the resource.
7: end while
8: end for

By the following claim we prove the assignment matching
optimality:

Claim .2. Given placement L = {Lji} and demand real-

ization dji , then the following claims holds:

1. For every matching algorithm we have gloci (M) ≤
∑k
j=1 min(Bi·

Lji , d
j
i ) and ggloi (M) ≤ min(Li ·Bi, di).

2. The assignment algorithm yields a cost as in Eq (??).
Moreover, the assignment algorithm maximizes the match-
ing revenue R(L, dji ,M).

Proof. Proof of part 1): Let M be some matching al-
gorithm, and denote gloci,j (M) as the number of type-i granted
locally in region j. Then the number granted locally re-
quests is less than the number of requests, i.e gloci,j (M) ≤ dji .
Also, the number of requests granted locally is less than
the number of resources multiple its capability ggloi,j (M) ≤
Lji ·Bi. Therefore, we have gloci,j (M) ≤ min(Lji ·Bi, d

j
i ), and

gloci (M) ≤
∑k
j=1 min(Bi · Lji , d

j
i ) as required. ggloi (M) ≤

min(Li ·Bi, di) is prove similarly.



Proof of part 2): We denote by Mopt the optimal assign-
ment algorithm. In the end of Step 2 the number of type-i re-
quests granted locally is gloci (Mopt) =

∑k
j=1 min(Bi ·Lji , d

j
i ).

We will prove ggloi (Mopt) ≥ min(Li ·Bi, di). Assume by con-

tradiction otherwise, i.e ggloi (Mopt) < min(Li ·Bi, di). Since

ggloi (Mopt) < di and ggloi (Mopt) < Li · Bi, there exist a un-
matched type-i request and a type-i partial-loaded resource.
But in Step 5 we match every unmatched type-i request
to matched to a type-i partial-loaded resource - a contra-
diction. By using part 1) of the claim, we yield that the

number of type-i requests granted globally is ggloi (Mopt) =
min(Li ·Bi, di).

The algorithm optimality is driven immediately by the
first part of the claim.

If we use Claim .1, and the definition of the service rev-
enue, we yield Eq. ??.

Proof of claims
Proof Proof of Remark 3.2. To prove the remark, we

show and prove even a stronger statement: determining
whether there is a placement with non-zero cost is NP-
hard, if the servers are heterogenous. Thus, finding a c-
approximation is also NP-hard.

For sake of simplicity, assume we have only a single region
k = 1. The system contains s servers (resources) indexed
by 1, 2, . . . , s. We denote the resource capacity of placing
resource type i in server-l by Bli. We denote a placement
by (̄x) = {xli}, where xli is an indicator such that xli = 1
if resource type i is placed on server l; Otherwise, xli = 0.
Finally, we set the resource cost Cr((̄x)) to be the linear
function

Cr((̄x)) =
1

κ
·
m∑
i=1

s∑
l=1

xli, (19)

where κ > 0 is some parameter. Note that
∑m
i=1

∑s
l=1 x

l
i

is the number of servers operated. We set the number of
requests for type-i resource to be 2, i.e, demand distribution
Di is a constant distribution with Pr(Di = 1) = 2.

Under these settings, the number of local granted requests
for type-i resources is gloci = min(

∑s
l=1 x

l
i · Bli, 2). We set

the service costs to be Cloci = − 1
m

, and Cremi = Cseri = 0.

Thus, the service cost of allocation (̄x) is

E|D(x̄)) = −1

s
·

l∑
i=1

min(

s∑
l=1

xli ·Bli, 2), (20)

and the total placement cost is (according to Eq. 2),

Cp(x̄)) =
1

κ
·
m∑
i=1

s∑
l=1

xli −
1

m
·
m∑
i=1

min(
s∑
l=1

xli ·Bli, 2). (21)

Finally, the static placement problem is finding the best
placement (̄x) = {xli} that maximizes Cp(x̄)) under the as-

sumption that xli ∈ {0, 1}, and
∑l
i=1 x

l
i ≤ 1.

Given a universal set of elements U = {1, 2, . . . ,m′}, and
a collection of s′ sets {S1, S2, . . . Ss′}, where every set Si is a
subset of U (Si ⊆ U), we define a cover C = {Si1 , Si2 , . . . , Sik}
such that the union of all sets in C covers U (U ⊆

⋃
S∈C S).

The input for the Set Cover Problem (SCP) is a triple (U, S, k),
where k is some integer; the question is is whether there is

a set-cover C such that |C| ≤ k. The problem was proved
to be NP-hard[].

We will prove that if there is a polynomial algorithm that
determines whatever the static placement problem has zero-
cost or not, then there is a polynomial algorithm that solves
SCP, and thus P=NP. Given an instance (U, S, k) we set the
number of resource types to be the size of the universal set
(m = m′) , and number of servers as the number of sets
in the collection (s = s′). The resource capacity of placing
resource type i in server-l, Bli, is defined as follows:

Bli =

{
2 : i ∈ Sl
1 : i 6∈ Sl

We choose to be a number between k
2

and k+1
2

(for in-

stance, one can choose κ =
k
2
+ k+1

2
2

).
Given these setting, one needs to prove that:

1. If there is a set-cover C such that |C| ≤ k, then the
optimal static placement solution has non-zero cost.

2. If there is no set-cover C such that |C| ≤ k, then the
optimal static placement solution has zero cost.

Proof of 1.: Let C be a set cover s.t, |C| ≤ k. We can
set a placement, where xli = 1 iff Sl ∈ C and i ∈ Sl, and
otherwise xli = 0. In this case,

∑m
i=1

∑s
l=1 x

l
i equals to size

of the set cover C, i.e,
∑m
i=1

∑s
l=1 x

l
i = |C| ≤ k. Also, since

C is a cover, there exists for every i a set Sl(i) ∈ C such that

i ∈ Sl. Thus, for every i
∑s
l=1 x

l
i ·Bli ≥ x

l(i)
i ·B

l(i)
i ≥ 1·2 = 2.

Thus, 1
m
·
∑m
i=1 min(

∑s
l=1 x

l
i ·Bli, 2) = 2 by Eq.21 we have

Cp(x̄)) ≤ k

κ
− 2. (22)

However, by definition κ, we have k
2
< κ, therefore Cp(x̄)) <

0. The cost of the optimal static placement problem must
be non-zero, as there exists a placement with negative cost.

Proof of 2.:

Proof Proof of Claim 4.2. We setD(t) to the instance
where the number of requests is zero, i.e. Pr(D(t)ji = 0) = 1
for all resource type i and area j. Placing in every region
only type-2 resources is optimal (i.e. Lopt(D(t − 1))j2 = sj

for every j).
The demand set in the next time slot D = D(t + 1) is

defined as follows: 1) The probability that the number of
requests for resource of type-1 in area 1 is more than n with
probability of ε

2n+1 (i.e Pr(D1
1(t) ≥ n) = ε

2n+1 ). 2) The
number of requests for type-i resources in area j, such that
(i, j) 6= (1, 1) is 0 (i.e Pr(D(t)ji = 0) = 1). An optimal
placement for D(t+ 1) is the placement allocating to every
region a type-1 resource. Note that D(t) and D(t + 1) are
strongly ε-near, and the distance between Lopt(D(t − 1))
Lopt(D(t)) is s, as required.

Proof Proof of theorem 5.1. To prove the theorem,
we will use the out-of-kilter algorithm (presented in [1]) that
solves the min-cost flow problem. Suppose the demand set
D = D(τ) = Dref (t) was updated to a new demand set
D(t). Then the weight function w() which is correspond
8-layer graph G8

f of the optimal flow f = fopt and node
potentials π, was updated a new weight function w′ (see
Fig. 2). We use the out-of-kilter algorithm that given the



(old) node potentials π and (old) optimal flow f finds a new
min-cost optimal flow f ′ with new node potentials π′, with
respect to the new demand D′ = D(t). We will prove that
flow weight is changed by at most ε (i.e. |w′(f)−w′(f ′)| < ε),
and therefore, by Lemma 6.4, the theorem is be proved.

Remark .3. Note that we extend the weight function to
be defined also on the reverse edges of G, where w(u, v) =
−w(v, u). Using this definition we yield that wf (e) = w(e)
or wf (e) = inf for every e in Gf

Let e = (u, v) be an out-of-kilter edge in the 8-layer graph
G8
f with respect to the initial node potentials reduce weight

w′
π
, i,e., 0 > w′

π
f (e). On the other hand the reduce weight

with respect to the previous weight, wπf , is non-negative and
therefore wπf (e) ≥ 0. By the definition of reduce weights
formula of wπ and w′π we obtain the following formula

w(u, v)− w′(u, v) ≥ −w′πf (u, v) = −w′π(u, v) > 0, (23)

and particularly we have w(u, v) 6= w′(u, v).
For the sake of the proof we call respectively to the edges

entering nodes (aj , n), (aj , ti, n), (ti, n) area edges, area+type
edges and type edges. The weight of other edges is zero
weight (i.e. w(e) = w′(e) = 0), according to Fig. 2. The
weight of area edges equals to w(e) = w′(e) = ∆ζj(n) =
ζj(n)− ζj(n− 1) (according to Claim 6.2) which is not de-
pendent on the demand distribution D. Thus, out-of-kilter
edges must be area+type edges and the type edges.

Denote cyci the cycle found in ith of the out-of-kilter Al-
gorithm. Then augmenting the flow along cyci increases the
flow weight w′(f) by w′(cyc), where w′(cyc) =

∑
e∈cyc w

′(e).
Thus, if the out-of-kilter algorithm runs over t iterations,
then

w′(f ′)− w′(f) =

t∑
i=1

w′(cyci) (24)

Denote πi the node potentials in the ith iteration. Then,
the weight of every cycle C equals to the cycle weight with
respect to node potentials πi, i.e w′(C) = w′

πi(C) =
∑
e∈C w

′πi(e).

Let Ai denote the set of out-of-kilter edges after the ith

iteration. Then according to [1] every in-kilter edge e ∈
cyci

⋂
(Ai)

c has reduced weight of w′
πi(e) = 0. Thus, if we

denote by Bi = cyci
⋂
Ai the out-of-kilter edges in the ith

cycle, then the weight of every cycle cyci equals to the sum
of out-of-kilter edges i.e. w′(cyci) =

∑
e∈Bi

w′
πi(e). Thus,

we yield that w′(f ′)− w′(f) =
∑t
i=1

∑
e∈Bi

w′
πi(e).

Let us denote by B =
⋃t
i=1Bi the total set of out-of-kilter

edges. The area+type and type edges have capacity of 1.
Thus, all out-of-kilter edges have a kilter number, which is
the residual capacity cf (e), of 1. If e ∈ Bi is an out-of-
kilter edge then after augmenting through cyci its residual
capacity decreases and it becomes an in-kilter edge. Thus,
the sets Bi for are disjoint in pairs i.e, Bi∩Bj = ∅ for i 6= j,
and therefore

w′(f ′)− w′(f) =
∑
e∈B

w′
πi(e). (25)

Let (u, v) = e ∈ Bi be an out-of-kilter edge. Then e is
an out-of-kilter edge in the i − 1-iteration with a negative
reduce weight i.e. w′

πi−1(e) < 0. The node potentials of

i iteration equals to πi = πi−1 − d, and therefore reduce
weight of edge (u, v) is w′

πi(e) = w′
πi−1(e) + d(u)− d(v).

But the weight in the i iteration of edge e equals to max(0, w′
πi−1(e)) =

0, and the shortest path to v is not longer than the short-
est path to u, i.e. d(u) ≥ d(v). Therefore, we imply that
w′
πi(e) ≥ w′πi−1(e) for every out-of-kilter edge e, and more-

over, one can imply by induction that w′
πi(e) ≥ w′

π0(e),
where π0 = π is the node potentials in the initial itera-
tion. Since e ∈ Bi is an out-of-kilter in the initial itera-
tion (e ∈ A0) by Eq (30) we obtain w′

πi(e) ≥ w′
π0(e) ≥

−|w′(e)− w(e)|, and by Eq (32) we imply that.

w′(f ′)− w′(f) ≥ −
∑
e∈B

|w′(e)− w(e)|. (26)

since f ′ is the min-cost optimal flow for weight w′, then
w′(f ′) ≤ w′(f), therefore

|w′(f ′)−w′(f)| = w′(f)−w′(f ′) ≤
∑
e∈B

|w′(e)−w(e)|. (27)

According to Claim 6.2, if e ∈ B is an area+type that
connects vertex (aj , ti, n), then

|w(e)− w′(e)| = |Rloci [Pr(Dj
i ≥ n ·Bi)− Pr(D′

j
i ≥ n ·Bi)]|.

(28)
Similarly, if e ∈ B is a type edge that connects vertex

(ti, n) then

|w(e)− w′(e)| = |Rgloi [Pr(Di ≥ n ·Bi)− Pr(D′i ≥ n ·Bi)]|
(29)

Then combining Eq (34), (35), (33) with the definitions of
the demand-distance (Eq (8)) and weakly ε-near yields that

|w′(f)− w′(f ′)| ≤ d(D,D′) < ε

As required.

Proof Proof of Claim 6.1. We assume in Section 3
that the resource cost Cr(L) is semi-separable and by Eq (??)
the service revenue E(R(L))|D is a semi-separable function.
Thus, subtracting the resource cost with service revenue,
which equals to the loss function (Eq (10)), is also a semi-
separable function.

We assume in Section 3 that total placement cost Cp(L)
is convex. Also, by claim .1 loss function equals to the sum
of the placement cost and a constant c =

∑
iE(Di)C

unsat
i ,

i.e lossp(L) = Cp(L) + c. Thus, the loss function is also
convex.

Proof Proof of Claim 6.2. It is sufficient to prove that
for every constant C non-negative integer valued random
variable X we have E(min(X,C)) − E(min(X,C − 1)) =
Pr(X ≥ C). A proof of it can be found in [17] Claim 6.4.

Proof Proof of Lemma 6.4. We will prove that for ev-
ery placement P = {P ji } its loss lossp(P ) is not larger than
the optimal flow weight fopt, which equals to the loss of its
correspond placement L.

Let P be a placement. We define a flow f(P ) as follows:

• The disjoint paths x-(aj , n)-aj , (aj , ti)-(a
j , ti, n)-ti, ti-

(ti, n)-y are assigned respectively with one unit of flow
if P j ≥ n, P ji ≥ n and Pi ≥ n; Otherwise, the corre-
spond path is assigned with zero unit of flow.

• The flow between (aj , ti), and (aj , ti) is P ji



• The flow between x and y is s−
∑m
i=1

∑k
j=1 P

j
i

One can verified that 1) f preserves the capacity constraint
and conservation of flows 2) the flow of f(P ) equals to
|f(P )| = s and 3) the weight of f(P ) equals to loss cost
of P , i.e w(f(P )) = lossp(P ). Since fopt is a min-cost flow
of flow value s, then lossp(P ) = w(f(P )) ≤ w(fopt) as re-
quired.

As the marginal-differential functions ∆γ are monotoni-
cally increasing, WLOG min-cost flow fopt assigns one unit
of flow respectively to x-(aj , n)-aj , (aj , ti)-(a

j , ti, n)-(ti),(ti)-
(ti, n)-y if Lj ≥ n, Lji ≥ n and Li ≥ n. Therefore the weight
of fopt equals to the loss of L.

Proof Proof of Theorem ??. Let popt = (x, v1, v2, . . . , vs, y)
be a shortest path in G8

f . We denote by u→ v a monotone
path that begins in a vertex u and ends in vertex v. We will
proved that there exist area nodes a(1), a(2), . . . , a(n) and a
type nodes t(1), t(2), . . . , t(n) such that popt = x → a(1) →
t(1) → a(2) → . . . → t(n) → y. WLOG, the optimal path
popt is not the edge (x, y).

By Theorem ?? all edges in G8
f have non-negative reduced

weights. Thus, the graph does not contain negative cycles
(a proof can be seen in [1]). WLOG the optimal path popt
does not contain cycles, otherwise the non-negative cycles
can be omitted from the path.

The first node in the optimal path v1 must be a layer-
2 node (a(1), num) in G8

f . The second node, v2 must be
an area node a(1); Otherwise, v2 will be the source node
x and the path popt will contains a cycle. Thus, the path
popt begins with a forward path between the source node
x and an area node a(1) (i.e v1 = (a(1), num) and v2 =
a(1)). In the same way one can show that popt ends with a
forward path between a type node t(n) and the sink node
y (i.e. end with the path t(n)-(t(n), num)-y. Similarly, one
can show that by induction that the path between a(1) and
t(n) alternately passing between forward paths between area
nodes a(i) and type nodes t(i) and backward path between
type node t(i) and area node a(i + 1). Thus the optimal
path is composed from monotone paths.

WLOG, every monotone path in popt is a shortest mono-
tone path i.e

popt = x
min→ aj1

min→ ti1
min→ aj2 . . .

min→ aje
min→ tie

min→ y,

Therefore, the weight of optimal path in G8
f , popt, equals

to the weight of a path pB in GBf (wf (popt) = wf (pBopt)).

Also, every path pB in GB has an equivalent path p in
G8
f with the same weight (i.e wf (p) = wf (pB)). Thus, the

weight of popt equals to the weight of the shortest path in
GBf as required.

Proof Proof of Theorem ??. This simply follows from
Lemmas .5, .4 and Theorem ??.

Proof Proof of Theorem ??. This simply follows from
Lemmas .5, .4 and Theorem ??.

Proof Proof of Corollary ??. This can be prove by
the fact that the flow weight in the ith iteration equals to
w(fi) = wfi−1(pi−1) + w(fi−1).

Proof Proof of Claim 4.2. We setD(t) to the instance
where the number of requests is zero, i.e. Pr(D(t)ji = 0) = 1
for all resource type i and area j. Placing in every region
only type-2 resources is optimal (i.e. Lopt(D(t − 1))j2 = sj

for every j).

The demand set in the next time slot D = D(t + 1) is
defined as follows: 1) The probability that the number of
requests for resource of type-1 in area 1 is more than n with
probability of ε

2n+1 (i.e Pr(D1
1(t) ≥ n) = ε

2n+1 ). 2) The
number of requests for type-i resources in area j, such that
(i, j) 6= (1, 1) is 0 (i.e Pr(D(t)ji = 0) = 1). An optimal
placement for D(t+ 1) is the placement allocating to every
region a type-1 resource. Note that D(t) and D(t + 1) are
strongly ε-near, and the distance between Lopt(D(t − 1))
Lopt(D(t)) is s, as required.

Proof Proof of theorem 5.1. To prove the theorem,
we will use the out-of-kilter algorithm (presented in Sec-
tion 10) that solves the min-cost flow problem. Suppose the
demand set D = D(τ) = Dref (t) was updated to a new
demand set D(t). Then the weight function w() which is
correspond 8-layer graph G8

f of the optimal flow f = fopt
and node potentials π, was updated a new weight function
w′ (see Fig. 2). The reduce weights condition correspond to
the original optimal flow f (See Section ??) does not takes
place as the weight function changed. Thus, we use the
out-of-kilter algorithm that given the (old) node potentials
π and (old) optimal flow f finds a new min-cost optimal
flow f ′ with new node potentials π′, respect to the new de-
mand D′ = D(t). We will prove that flow weight is changed
by at most ε (i.e. |w′(f) − w′(f ′)| < ε), and therefore, by
Lemma 6.4, the theorem is be proved.

Let e = (u, v) be an out-of-kilter edge in the 8-layer graph
G8
f respect to the initial node potentials reduce weight w′

π
,

i,e., 0 > w′
π
f (e). On the other hand the reduce weight re-

spect to the previous weight, wπf , is non-negative and there-
fore wπf (e) ≥ 0. By the definition of reduce weights formula
of wπ and w′π we obtain the following formula

w(u, v)− w′(u, v) ≥ −w′πf (u, v) = −w′π(u, v) > 0, (30)

and particularly we have w(u, v) 6= w′(u, v).
For the sake of the proof we call respectively to the edges

entering nodes (aj , n), (aj , ti, n), (ti, n) area edges, area+type
edges and type edges. The weight of other edges is zero
weight (i.e. w(e) = w′(e) = 0), according to Fig. 2. The
weight of area edges equals to w(e) = w′(e) = ∆ζj(n) =
ζj(n)− ζj(n− 1) (according to Claim 6.2) which is not de-
pendent on the demand distribution D. Thus, out-of-kilter
edges must be area+type edges and the type edges.

Denote cyci the cycle found in ith iteration in State 7 of
the out-of-kilter Algorithm. Then augmenting the flow along
cyci increases (State 9) the flow weight w′(f) by −w′(cyc),
where w′(cyc) =

∑
e∈cyc w

′(e). Thus, if the out-of-kilter
algorithm runs over t iterations, then

w′(f)− w′(f ′) = −
t∑
i=1

w′(cyci) (31)

Denote πi the node potentials in the ith iteration. Then,
the weight of every cycle C equals to the cycle weight respect
to node potentials πi, i.e w′(C) = w′

πi(C) =
∑
e∈C w

′πi(e).

Let Ai denote the set of out-of-kilter edges after the ith

iteration. Then according to Lemma .7 every in-kilter edge
e ∈ cyci

⋂
(Ai)

c has reduced weight of w′
πi(e) = 0. Thus,

if we denote by Bi = cyci
⋂
Ai the out-of-kilter edges in

the ith cycle, then the weight of every cycle cyci equals to
the sum of out-of-kilter edges i.e. w′(cyci) =

∑
e∈Bi

w′
πi(e).



Thus, if we denote by B =
⋃
i = 1tBi the out-of-kilter edges

then we yield that w′(f)− w′(f ′) =
∑
e∈B w

′πi(e).
The area+type and type edges have capacity of 1. Thus,

all out-of-kilter edges have a kilter number, which is the
residual capacity cf (e), of 1. If e ∈ Bi is an out-of-kilter
edge then after augmenting through cyci its residual capac-
ity decreases and it becomes an in-kilter edge. Thus, the
sets Bi for are disjoint in pairs i.e, Bi ∩ Bj = ∅ for i 6= j,
and therefore

w′(f)− w′(f ′) = −
t∑
i=1

∑
e∈Bi

w′
πi(e). (32)

Let (u, v) = e ∈ Bi be an out-of-kilter edge. Then e is
an out-of-kilter edge in the i − 1-iteration with a negative
reduce weight i.e. w′

πi−1(e) < 0. The node potentials of
i iteration equals to πi = πi−1 − d, and therefore reduce
weight of edge (u, v) is w′

πi(e) = w′
πi−1(e) + d(u)− d(v).

But the weight in the i iteration of edge e (Step 3) equals
to max(0, w′

πi−1(e)) = 0, and the shortest path to v is not
longer than the shortest path to u, i.e. d(u) ≤ d(v). There-
fore, we imply that w′

πi(e) ≥ w′
πi−1(e) for every out-of-

kilter edge e, and moreover, one can imply by induction
that w′

πi(e) ≥ w′
π0(e), where π0 = π is the node poten-

tials in the initial iteration. Since e ∈ Bi is an out-of-
kilter in the initial iteration (e ∈ A0) by Eq (30) we obtain
w′
πi(e) ≥ w′

π0(e) ≥ −|w′(e) − w(e)|, and by Eq (32) we
imply that.

w′(f)− w′(f ′) ≤
∑
e∈B

|w′(e)− w(e)|. (33)

According to Claim 6.2, if e ∈ B is an area+type edge
enters to vertex (aj , ti, n), then

w(e)−w′(e) = Rloci [Pr(Dj
i ≥ n·Bi)−Pr(D′

j
i ≥ n·Bi)]. (34)

Similarly, if e ∈ B is a type edge enters to vertex (ti, n)
then

w(e)−w′(e) = Rgloi [Pr(Di ≥ n·Bi)−Pr(D′i ≥ n·Bi)] (35)

Then combining Eq (34), (35), (33) with the definitions of
the demand distance (Eq (8)) and weakly ε-near yields that

|w′(f)− w′(f ′)| ≤ d(D,D′) < ε

As required.

Computation of the weight of edges and node
potentials in a bipartite graph
By the following lemmas, we can compute the edges weight
and node potentials of the bipartite graph in O(1) (given
computing the marginal differential is O(1) ).

Lemma .4. Let f be a flow that SSP calculates in its ith

iteration in G8
f . We denote respectively by f ji , f

j , fi the flow

through (aj , ti), the flow through aj and the flow through
ti . Then the minimal monotone paths weights in G8

f can
be computed in O(1) by the marginal-differential functions

(Claim 6.2) as given in the following formulas: 1) wf (x
min→

aj) = ∆γj(f j + 1). 2) wf (aj
min→ ti) = ∆γji (f

j
i + 1). 3)

wf (tj
min→ ai) = −∆γji (f

j
i ) if f ji > 0 and otherwise ∞. 4)

wf (ti
min→ y) = ∆γi(fi + 1).

Proof Proof of Lemma .4. Note that a flow passing
through vertex (aj , n) has a weight of ∆γj(n). As the
marginal differential functions are monotonically increasing,
a min-cost flow must pass through vertices (aj , 1), (aj , 2), . . . , (aj , f j).
Thus, the weight forward paths x-(aj , n)-aj is ∆γj(n) iff
n > f j and otherwise ∞. Thus, the minimal monotone
path between the source x and an area node aj must pass
through vertices (aj , f j + 1) with a weight of ∆γj(f j + 1).
We have prove part 1), and parts 2), 3) and 4) can be proved
by a similar way.

Lemma .5. Let f and π be the node-potentials that SSP
calculates in its ith iteration in G8

f , and let dB(v) be the
shortest path weight between x and v in the bipartite graph
GBf (not the 8-layer residual G8

f graph) respect to the node
potentials π. Then, SSP updates the node potentials as π(v) =
π(v)− dB(v) for every vertex v in V B.

Proof Proof of Lemma .5. For this proof we denote
d8(v) = d(v) as the shortest path weight between x and v
in the 8-layer residual G8

f graph , with respect to π. Then

SSP updates the node potentials as π = π−d8 = π−d (See
Section ??). Thus, it is sufficient to prove that for every
vertex v we have dB(v) = d8(v).

Let v be a vertex in V B , and let pBopt(v) be the shortest

path in G8. Then we have dB(v) = wπf (pBopt(v)). In [1]
they prove that the reduce weight for every path p between
vertices a and b in a general graph G equals to wπ(p) =
w(p) − π(a) + π(b) where w(p) is the path weight. Thus,
the shortest path respect to the node potentials π equals to
dB(v) = wf (pBopt(v))− π(x) + π(v)

Similarly to the proof Theorem 7.1, there exists a path
p8opt(v) which has the same weight of pBopt(v) and is the short-

est path in G8
f , namely wf (pBopt(v)) = wf (p8opt(v)). This

implies that shortest path respect to π in 8-layer residual
equals to d8(v) = wf (p8opt(v))−π(x)+π(v) = wf (pBopt(v))−
π(x) + π(v) = dB(v), as required.

BGA complexity and the bounded case
First we prove the BGA complexity according to the follow-
ing claim.

Claim .6. BGA runs in O(lkm) where l is the number of
iterations

Proof. In every iteration the algorithm finds the short-
est paths in GBf by Dijkstra algorithm, which costs O(|E|+
|V | log |V |) = O(km). Updating the node potentials and
the flow values takes at most O(|V |) = O(k +m) time, and
updating the graph weights is at most O(|E|) = O(km)
time.

To solve the bounded case (i.e sk are finite) we can set
the marginal differential functions to ∆γj(n) = ∞, where
n ≥ sj + 1 and run BGA according to these new weights. In
every iteration, BGA finds a shortest path that can either
the edge (x, y) with a zero weight (and therefore by the non-
negative stopping rule BGA terminates) or a shortest path
that passes through areas node aj , which must have negative
weight.



Assume that in the first s iterations BGA finds only neg-
ative shortest paths through areas node aj . Then according
to Lemma .4 every edge (x, aj) in these shortest paths sat-
isfied f j ≤ sj . Otherwise, the edges (x, aj) have infinity
weight, and the shortest path does not passes them. Since∑k
j=1 f

j equals to the number of iterations (which is s), then

for every area j we have f j = sj . Thus, in the next iteration
of BGA the shortest path must be the edge (x, y), and BGA
terminates.

Thus, after at most s iterations BGA terminates, and its
complexity will be at most O(smk) for the bounded case.

out-of-kilter-algorithm
Let f flow be a flow defined on the graph G =< V,E >,
and assume the reduced weight function wπ is defined on
Gf =< V,Ef >, such that wπ does not satisfies the non-
negative reduced weight property.

An edge e ∈ Ef in the residual graph Gf is called out-of-
kilter edge if its reduce weight is negative, i.e wπf (e) < 0. For
those edges we define its kilter number k(e) to be its residual
capacity k(e) = cf (e). Note that if the kilter number must
be different then zero; otherwise, the residual capacity is
zero, and the edge weight wf (e) is set to infinite. For an
in-kilter edge the kilter number is set to zero.

The out-of-kilter-algorithm (Algorithm 2) finds in every
iteration an out-of-kilter edge and decreases its kilter num-
ber. In [1] they proved the following Lemma.

Lemma .7. Let f flow be a flow defined on the graph
G =< V,E > and let π be an arbitrary node-potentials func-
tion. Suppose we run the out-of-kilter algorithm on these
parameters, and let ei = (u, v) and πi be respectively the
out-of-kilter edge chosen in Step2 and node potentials of the
ith iteration (defined in step 5). Then the following claims
hold:

1. If e is an out-of-kilter edge in the cycle w of Step 7
respect to node potentials πi, then its kilter number is
strictly decreases. Moreover, the kilter number of ei
strictly decreases.

2. All edges e in the cycle w have non-positive reduce
weights (i.e. wπ(e) ≤ 0). Moreover, e is an in-kilter
edge in the cycle w, then its reduce weight wπi(e) equals
to zero.

3. The kilter number of every edge in the residual graph
does not increased.

Of course, combining the previous lemma with the non-
negative reduced weight condition proves the optimality of
the algorithm.

Service cost (Cxxxi ) Locally Remotely Unsatisfied
Windows -1.5$ -1$ 1$
RHEL -1$ -0.9$ 1$

Table 1: Service costs used in simulations

Algorithm 2 The out-of-kilter-algorithm

Require: A feasible flow f on G, a residual graph Gf , node
potentials π, a source x and a sink y in G.

1: while the network contains an out-of-kilter edge in Gf
do

2: Select an out-of-kilter edge (u, v) in G.
3: Define the length of each arc e in Gf as max 0, wπ(e).
4: Let d() denote the shortest path distances from node

v to all other nodes in Gf − {(u, v)} and let p denote
a shortest path from node v to node u

5: Update π(v) = π(v)− d(v) for every vertex v
6: if wπ(u, v) < 0 then
7: Define the cycle w = p

⋃
(u, v)

8: Find δ = min{c(e)|e ∈ E}).
9: Augment δ units of flow through f .

10: end if
11: end while

On demand costs (pji ) USA Europe Asia
Windows 0.14$ 0.133$ 0.161$
RHEL 0.137$ 0.137$ 0.158$

Table 2: Amazon EC2 price system


